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Is the level spacing distribution of the infinite-dimensional
harmonic oscillator that of a Poisson process?

Chris Greenman
Department of Mathematics, Bolton Institute, Deane Road, Bolton, BL3 5AB, UK

Received 9 April 1996

Abstract. By averaging over the frequencies of the oscillations, the spacing distribution of the
infinite-dimensional harmonic oscillator is shown to be e−s , following the universal behaviour
of spacing distributions of integrable systems. For oscillators of finite dimension,n, reasons for

the model distribution,ζ(n)−1eζ(n)−1s , are suggested. Numerical results follow.

1. Introduction

At the classical level, the defining equations of a dynamical system can be linear or non-
linear. This gives rise to properties of integrability and chaos, with mixed KAM states
between. However, when the same system is studied at the quantum level, the Schrodinger
equation is applied, which is linear.

The question of how the nonlinear properties of the classical system are absorbed into
the quantum mechanics need to be addressed. Similarly, properties of the quantum system
that give information about the classical system are worth investigating.

For a bounded system, the quantized energies take discrete values. If the spacings
between consecutive energy values are normalized to have an average of unity, then a
probability distribution can be defined from these spacings. This is known as the level
spacing distribution.

For a system that is classically chaotic, the level spacing distribution is the same as
that obtained from the spacings between eigenvalues of certain random matrices. For a
system with time-reversal invariance, the Gaussian orthogonal ensemble of real symmetric
matrices is obtained (the levels show linear repulsion). For a system without the invariance,
the Gaussian unitary ensemble of real complex matrices is found (the levels have quadratic
repulsion). These have been found for numerous examples, see [1–3] for a few.

For classically integrable systems, it has been observed and shown by Berry and Tabor
[4] that the statistics follow those of a Poisson process (the levels are independent).

Thus the level spacing distributions are split into different universality classes, depending
upon the originating systems classical chaoticity; it is a signature for chaos.

The proof in [4] for classically integrable systems fails for one important class of
systems, however. These are the harmonic oscillators, which is a standard model for
various systems, ranging from polyatomic molecules to the phonon spectrum of solids (see
[5]). For any integrable system, the energy surface can be transformed into the action-angle
coordinates. The flat nature of the energy surface of harmonic oscillators in action space
causes the method of stationary phase employed in [4] to break down. Pandeyet al [5, 6]
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showed that the two-dimensional oscillator has an unstable level spacing distribution. In
[7], however, an average was formed that removed the instabilities noted by Pandeyet al
and the following result obtained for generic frequency ratio

P(s) =


ζ(2)−1 s 6 1
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This method also enabledP(s) to be determined for specific values of frequency ratio.
However, the method relied heavily on continued fraction theory and so related to the two-
dimensional case only. The following work averages over the frequencies of the oscillations
to obtainP(s) for harmonic oscillators of general dimension.

The following results will be proved.

Theorem 1.For then-dimensional harmonic oscillator (n DHO), provided thats is small,
the average level spacing distribution is approximately,

P(s) =
n−2∑
r=0

ζ(n)−r−1 sr

r!
(2)

whereζ(n) is the Reimann zeta function.

As the dimension of the oscillator becomes higher, the approximation will become more
exact, ultimately yielding,

Corollary 1.1. For the infinite-dimensional harmonic oscillator, the average level spacing
distribution is that of a Poisson process, i.e. e−s , following the universal behaviour associated
with integrable systems.

Note that the finite-dimensional harmonic oscillator can be approximated quite closely
by the functionζ(n)−1e− s

ζ(n) . Although the total probability of this function is unity, this is
unlikely to be the exact level spacing distribution, as the average isζ(n)−1, and not unity.

2. Averaging over the frequencies of the oscillations

For any physical system there exists the HamiltonianH(p, q) which is dependent upon
2n momentum and position coordinates, respectively, wheren is the dimension of the
system. For integrable systems, the phase space(p, q) can be transformed into action-angle
coordinates(I, α), where the Hamiltonian depends only upon the action coordinatesI. If
I = h̄m + γ where m is any vector in the unit lattice (with positive coordinates) and
γ is a constant vector, known as the Maslov index, thenEm = H(I) give the discrete
values of energy of the quantized system. This method of quantization is known as the
EBK quantization. More details of these methods may be found in [2] or [4].

As the differences between energy levels are used to obtain the level spacing distribution,
γ is irrelevant and will be taken as zero. For ann-dimensional harmonic oscillator, the
Hamiltonian is,

H(I) = I · ω

whereωi are the frequencies of the oscillators. IfU denotes the volume enclosed by the
energy surface inm space then,

U(m) = (ω · m)n

n!
∏

ωi

.
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If αi = ωi/ωn then this becomes

U(m) = (α · m)n

n!
∏

αi

(3)

where αn = 1. Let the surface initially intersectm, then increaseU to U ′ where the
next lattice point,m′, is intersected. Degeneracy among the energy levels corresponds to
commensurate ratios,αi , whereupon zero spacings ultimately contribute to giveδ(s) as the
spacing distribution. On average, degeneracy among the energies does not occur, so will
be ignored in what follows. The shift vector,p, is defined by,

p = m′ − m. (4)

Now the spacing is the difference between consecutive volumes, so

s = U ′ − U = (α · m′)n − (α · m)n

n!
∏n

i=1 αi

(by (3))

= α(m′ − m)

n!
∏n

i=1 αi

[(α · m′)n−1 + (α · m′)n−2α · m + · · · + (α · m)n−1]

≈ α · p

n!
∏n

i=1 αi

n(α · m)n−1 (by (4))

= α · p

(n − 1)!
∏n

i=1 αi

(α · m)n−1. (5)

To obtain P(s), the following method is employed. Firstα is randomly selected from
some region with volumeV (this will also be denoted as regionV ). The regionV must be
small to ensure that the resulting spacing distributions have approximately the same average
spacing. Note thatV has dimensionn−1, asαn = 1. Consider the subregion of the volume
V , such that the spacing induced is under some uppermost limit,λ, for some shift vector,
p. Then by (5), the following inequality must be satisfied,

0 < α · p <
(n − 1)!

∏n
i=1 αiλ

(α · m)n−1
= cλ. (6)

Note that the coordinates of the shift vector,p, must be coprime. If this is not the case, then
by dividing through with the highest common divisor, a new shift vector will be obtained
which will induce a smaller spacing than the original. As a semi-classical analysis, it is
assumed that the quantum numbers are quite large, soα · m is assumed to be of large
order. Thus asα varies over the volumeV , the main variation in equality (6) arises in the
variation ofα · p, so cλ is taken as constant.

Thus there is a subvolumeVp in V , such that ifα lies in Vp, then the shift vector that
gives the spacing isp. Then if the probability that a randomly chosen spacing is less than
λ is P(s < λ),

P(s < λ) = 1

V

∑
p

Vp. (7)

The three-dimensional case is outlined in figure 1. Note that only lattice points in the region,
R, indicated, will result in a shift vector,p, that contributes to the sum in (7).

The average level spacing distribution is then finally obtained from (7) via

P(λ) = d

dλ
P (s < λ). (8)
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Figure 1. The energy surface inm space.

3. The main result

The inequality of (6) defines a narrow strip inα space of widthcλ|p|−1. If pn is given free
rein over the integers, a series of parallel strips is obtained becauseαn = 1. These are a
perpendicular distance|p|−1 apart. Ifq = (p1, . . . , pn−1), let Wq denote the intersection of
V with the union of all the strips, and|Wq| the volume of this intersection. IfVq = ∑

pn
Vp,

then (7) becomes,

P(s < λ) = 1

V

∑
q

Vp. (9)

Now |Wq| represents a good estimate ofVq. However, if q and q2 are distinct, and
α ∈ Wq ∩ Wq2, then the shift vector that corresponds to the spacing for that value of
α, could derive fromq or q2. On average, half the regionWq ∩Wq2 will give a shift vector
derived fromq. Thus, |Wq| − 1

2

∑
q2

|Wq ∩ Wq2| is a better estimate ofVq. However, for
any q3 distinct fromq andq2, whenα ∈ Wq ∩ Wq2 ∩ Wq3, the shift vector will correspond
to q, on average, for a third of the volume|Wq ∩ Wq2 ∩ Wq3|. Thus, for eachq2, q3,
the volume 1

2|Wq ∩ Wq2| taken off at the previous step, removed, on average, a volume
1
2

1
3|Wq ∩ Wq2 ∩ Wq3| that would give a shift vector corresponding toq. So a volume

1
3! |Wq ∩ Wq2 ∩ Wq3 must be added back on.

This process of alternately removing and replacing smaller and smaller terms continues
until,

Vq = |Wq| − 1

2

∑
q2

|Wq ∩ Wq2| + 1

3!

∑
q2,q3

|Wq ∩ Wq2 ∩ Wq3| − · · · + (−1)n

(n − 1)!

×
∑

q2,...,qn−1

|Wq ∩ · · · ∩ Wqn−1|. (10)

As V is an(n − 1)-dimensional space, forq, q2, . . . , qn distinct,Wq ∩ Wq2 ∩ · · · ∩Wqn
will

in general be an empty set, so make no contributions to the above sum, and the process
terminates. However, this assumption of no intersection will break down once the width of
the strips(cλ/|p|) become large enough. This problem is investigated in section 4.
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Thus the volumes|Wq ∩ Wq2 ∩ · · · ∩ Wqi
| need to be determined. Now the set of strips

Wqi
are described byqi · α = βi . Considering|Wq ∩ Wq2 ∩ · · · ∩ Wqn−1| first,

q · α = β1

q2 · α = β2

...
...

qn−1 · α = βn−1

(11)

where βi range over an interval of lengthcλ (by (6)). Then define the matrixQT =
(q

...q2
... . . .

...qn−1) to give Qα = β. In general,Q will have an inverse (see section 4).
Putting x = Qα yields x = β. As eachβi varies over an interval of lengthcλ, each
parallelepiped of intersection has volumecn−1

λ in x space, so volumecn−1
λ /|Q| in α space.

In x space, the corresponding planes obtained from transforming the planes of (11)
in α space, are perpendicular, and for consecutive values,pn, a perpendicular distance of
unity apart. Thus the parallelepipeds occur with density unity inx space. The volumeV
averaged over inα space becomesV |Q| in x space, thus,

|Wq ∩ Wq2 ∩ · · · ∩ Wqn−1| = cn−1
λ V .

If the regionWq∩Wq2∩· · ·∩Wqi
is being considered, then this corresponds to the intersection

of the planes,

q · α = β1

...
...

qi · α = βi.

(12)

The same transformation as above can be applied. The intersection then becomes ani-
dimensional parallelepiped of cross-sectionci

λ in x space, with the othern−1−i dimensions
forming a ‘tube’, perpendicular to the cross-section, running through the surfaces as defined
in (12). As the surfaces embedded inx space are a unit distance apart, the(n − 1 − i)-
dimensional ‘tubes’ will have length (i.e. an(n − 1 − i)-dimensional volume) ofV |Q|,
so,

|Wq ∩ Wq2 ∩ · · · ∩ Wqi
| = ci

λV . (13)

Then using (10) and (13), yields,

Vq = cλV − 1

2

∑
q2

c2
λV + 1

3!

∑
q2,q3

c3
λV − · · · + (−1)n

(n − 1)!

∑
q2,...,qn−1

cn−1
λ V

so substituting into (8),

P(s < λ) =
∑

q

cλ − 1

2

∑
q,q2

c2
λ + 1

3!

∑
q,q2,q3

c3
λ − · · · + (−1)n

(n − 1)!

∑
q,q2,...,qn−1

cn−1
λ . (14)

Let {N} denote the set of possible vectors,q, that give rise to a shift vector, andN denote
the size of this set. Then,∑

q,...,qi

ci
λ = ci

λN
i. (15)

But N will just be the product of the surface area of the energy surface, resolved in
direction pn, with a factor, ζ(n)−1, accounting for the coprime condition. Then letA

denote the surface area, andϑ be the angle betweenpn and the surface normal vectorα.
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ThenN = A cosϑ . First evaluate the surface area. From (3), the energy surface is defined
by,

U(m) = (α · m)n

n!
∏n

i=1 αi

or equivalently,

α · m = n

√√√√Un!
n∏

i=1

αi.

Denote the perpendicular distance of the surface from the origin (ofm space) byr, then

r =
n
√

Un!
∏n

i=1 αi

|α| .

Then

A = dU

dr

which yields,

A = |α|(m · α)n−1

(n − 1)!
∏n

i=1 αi

.

Also,

cosϑ = α · pn

|α|pn

= 1

|α| (asαn = 1)

which together give,

A cosϑ = (m · α)n−1

(n − 1)!
∏n

i=1 αi

. (16)

Thus finally, using (6),

cλN = cλζ(n)−1A cosϑ = ζ(n)−1 (n − 1)!
∏n

i=1 αiλ

(m · α)n−1

(m · α)n−1

(n − 1)!
∏n

i=1 αi

= ζ(n)−1λ.

Thus (15) gives,∑
q,...,qi

ci
λ = ζ(n)−iλi

which combining with (14) gives,

P(s < λ) =
n−1∑
i=1

ζ(n)−iλi

i!
. (17)

Then using (8) to obtain the probability distribution gives,

P(λ) = ζ(n)−1
n−2∑
i=0

1

i!

(
λ

ζ(n)

)i

which is the distribution given in theorem 1. Asn → ∞ note thatζ(n) → 1, so the
distribution given in corollary 1.1 is obtained,

P(λ) = e−λ

as conjectured by Pandeyet al [5, 6].
As pointed out above, these expressions only remain valid provided thatcλ is sufficiently

small. The range of validity is investigated in the next section.
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4. The range of validity

In section 3 various volumes were estimated in the calculation ofP(S < λ) in (14). There
were two main assumptions involved in the counting of these volumes, however. This
section addresses those assumptions in turn.

The first assumption made was that the intersectionsWq ∩Wq2 ∩ · · · ∩Wqn
of (10) were

transversal, or equivalently, that the matrixQ was invertible. This will not always be the
case. However, we have the following result.

Lemma 1.The proportion of possible matricesQ with determinant zero, tends to zero in
the semi-classical limitm → ∞.

Proof. Assume thatWq ∩ Wq2 ∩ · · · ∩ Wqi−1 is a transversal intersection, then consider
the set of possible vectors,qi , that give rise to a regionWqi

that does not intersect
Wq ∩ Wq2 ∩ · · · ∩ Wqi−1 transversally. The set of possible vectors,q, was defined after
(14) as{N}, where it was found in (16) that

N = A cosϑ = (m · α)n−1

(n − 1)!
∏n

i=1 αi

.

The ‘non-transversal’ vectorqi will be taken from this set. Let{q, . . . , qi−1} denote the
linear basis formed by vectorsq, . . . , qi−1. Vectors in this basis with integer coordinates are
the non-transversal ones required. The volume of intersection of this basis with{N} will be
an upper bound on the number of non-transversal vectorqi . This volume will be of the order
of (m·α)i−1

(i−1)! . Thus the proportion of vectors giving nontransversal intersections is of the order

of (m · α)i−1−n (n−1)!
(i−1)! . As the dimensionn is fixed, and the analysis semi-classical, which

means|m| is taken as being arbitrarily large, the proportion of non-transversal vectors is
arbitrarily close to zero, which completes the proof. �

The second assumption made is that asV is an (n − 1)-dimensional space,Wq ∩
Wq2 ∩ · · · ∩ Wqn

will be an empty set. This is not necessarily the case. By lemma 1, the
intersectionWq ∩Wq2 ∩· · ·∩Wqn−1 is transversal and the matrixQ is invertible. The region
Wq ∩ · · · ∩ Wqn−1 is described by the simultaneous equations of (11). Then for any vector
qn (againWqn

is taken as transversal) we have

Lemma 2.The intersectionWq ∩Wq2 ∩· · ·∩Wqn−1 ∩Wqn
is an empty set in the limitn → ∞.

Proof. From (11) the intersectionWq ∩Wq2 ∩ · · · ∩Wqn−1 is described by the simultaneous
equations

q · α = βi

...
...

qn−1 · α = βn−1.

Whereβi are (very close to) integers. Under the transformationx = Qα, this becomes
xi = βi . The regionWqn

is defined byqn · α = βn. As Q is assumed to be invertible, in
x space we obtain

qn · Q−1x = βn ⇔ x · (Q−1)T qn = βn.

If Rij denotes the matrix of cofactors ofQ then

xiRij (qn)j = βn|Q| ⇔ x · Rqn = βn|Q|. (18)

Then as the dimensionn → ∞, |Q| becomes very large, and the highest common factor
of the elementsRij (qn)j tend to unity. Thus the proportion of vectorsx (with integer
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Figure 2. Averaged spacing distributions for various harmonic oscillators.

coordinates) that are solutions to (18) is|Q|−1, which tends to zero as the dimension
becomes infinite.

It has been assumed that the width of the stripscλ is negligible. However, ifλ is large
enough, this is not the case. In the limit of infinite dimension,λ, can be arbitrarily large,
and the number of lattice points,x, that (18) is satisfied by (as the range ofβn increases)
will still be of negligible proportion. This completes the proof. �

5. Numerical results

It has been shown that the average distribution for the infinite-dimensional harmonic
oscillator will be the exponential distribution of the Poisson process. How close the model
functionζ(n)−1e−ζ(n)−1s represents the actual distribution, was numerically investigated (see
figure 2).

To obtain the distributions shown in the figure the spacings from the first 100 000 levels
were obtained for 10 000 different frequency ratios. This took about three hours on a VAX
mainframe computer. The exponential distribution e−s associated with integrable systems
is indicated by a curve in all four cases.

For the two-dimensional oscillator, distribution (1) was rigorously derived in [7], so the
distribution ζ(2)−1e−ζ(2)s will not be a good approximation. However, the numerics can
be seen to be a very close fit to (1), which is indicated by the broken curve. It was also
observed that a good approximation to (1) could be obtained by quicker numerics. For
instance, (1) readily presents itself if the distribution from 1000 levels is averaged over
1000 frequency ratios.

For the three-dimensional oscillator, the numerics can be seen to fit the model
distributionζ(3)−1e−ζ(3)−1s (indicated by the broken curve) quite closely. Similar statistics
were found in other cases, with good agreement for smalls, rising above the function for
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1
2 < s < 2, and then dipping below.

For dimensions above three, the model distributionζ(n)−1e−ζ(n)−1s is very close to the
exponential distribution e−s , as are the numerics. The statistics fluctuated a lot more in the
higher-dimensional cases, which would seem to suggest a higher degree of averaging was
required. This may be due to the following observation. In dimension two, one frequency
ratio, a1, was averaged over 10 000 values. In the three-dimensional case, each frequency
ratio, a1, a2, was averaged over 100 values. In then-dimensional case, each frequency
ratio, a1, . . . , an−1, is averaging over 10 000

1
n different values. To get the consistency of

the results of the two-dimensional case, it would suggest averaging over 10 000n different
frequencies, making the infinite-dimensional case difficult to observe. However, as the
dimension increased, the statistics rapidly approached those of a Poisson process.

6. Conclusions

The average level spacing distributions for harmonic oscillators in general dimension have
been investigated. For the infinite dimensional oscillator, the distribution was found to
follow the universal behaviour associated with integrable systems, i.e. that of a Poisson
process,P(s) = e−s . For finite-dimensional oscillators (above dimension two), the
distribution was well approximated by the functionζ(n)−1e−ζ(n)−1s , which gives a total
probability of unity and a mean that is approximately unity. Note that the distribution
becomes exact in the limits → 0.

Considering the two-dimensional case in particular, it was interesting to see
distribution (1) reflected so well in the numerics. The method of averaging over the
frequencies used in this paper, is less powerful than that used in [7], where it was possible
to obtain an analytic expression for the spacing distribution, for any particular frequency
ratio, using its continued fraction. However, that method was not easily extended to higher
dimensions, due to its use of continued fraction theory, which is readily applicable in two
dimensions. It may be possible to extend those results into higher dimension, using Jacobi–
Perron theory [8, 9] which would be an interesting further study. One would hope to obtain
the average distribution derived above for small spacings, along with a number theoretical
correction, corresponding to the larger spacings, much as in the two-dimensional case.

As to an answer to the title of the paper, it would seem that the infinite-dimensional
harmonic oscillator does give an exponential spacing distribution which, although difficult
to observe, is rapidly approximated by finite-dimensional oscillators.
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